Lecture 14 : Approximating an integral

Sometimes, we need to approximate an integral of the form $\int_a^b f(x)dx$ and we cannot find an antiderivative in order to evaluate the integral. Also we may need to evaluate $\int_a^b f(x)dx$ where we do not have a formula for f(x) but we have data describing a set of values of the function.

Review

We might approximate the given integral using a Riemann sum. Already we have looked at the left end-point approximation and the right end point approximation to $\int_a^b f(x)dx$ in Calculus 1. We also looked at **the midpoint approximation M**:

Midpoint Rule If f is integrable on [a, b], then

$$\int_{a}^{b} f(x)dx \approx M_{n} = \sum_{i=1}^{n} f(\bar{x}_{i})\Delta x = \Delta x(f(\bar{x}_{1}) + f(\bar{x}_{2}) + \dots + f(\bar{x}_{n}))$$

where

$$\Delta x = \frac{b-a}{n} \quad \text{and} \quad x_i = a + i\Delta x \text{ and } \bar{x}_i = \frac{1}{2}(x_{i-1} + x_i) = \text{ midpoint of } [x_{i-1}, x_i].$$

Example Use the midpoint rule with n = 6 to approximate $\int_{1}^{4} \frac{1}{x} dx$. $(= \ln(4) = 1.386294361)$ Fill in the tables below:

 $\Delta x =$

We can also approximate a definite integral $\int_a^b f(x) dx$ using an approximation by trapezoids as shown in the picture below for $f(x) \ge 0$

FIGURE 2 Trapezoidal approximation

Trapezoidal Rule If f is integrable on [a, b], then

$$\int_{a}^{b} f(x)dx \approx T_{n} = \frac{\Delta x}{2}(f(x_{0}) + 2f(x_{1}) + 2f(x_{2}) + \dots + 2f(x_{n-1}) + f(x_{n}))$$

where

$$\Delta x = \frac{b-a}{n}$$
 and $x_i = a + i\Delta x$ and.

Example Use the trapezoidal rule with n = 6 to approximate $\int_{1}^{4} \frac{1}{x} dx$. (= ln(4) = 1.386294361) Fill in the tables below:

x_i	$x_0 = 1$	$x_1 = 3/2$	$x_2 = 2$	$x_3 = 5/2$	$x_4 = 3$	$x_5 = 7/2$	$x_6 = 4$
$f(x_i) = \frac{1}{x_i}$							

 $\Delta x =$

$$T_6 = \frac{\Delta x}{2}(f(x_0) + 2f(x_1) + 2f(x_2) + 2f(x_3) + 2f(x_4) + 2f(x_5) + f(x_6)) =$$

The **error** when using an approximation is the difference between the true value of the integral and the approximation.

The error for the midpoint approximation above is

$$E_M = \int_1^4 \frac{1}{x} dx - M_6 =$$

The error for the trapezoidal approximation above is

$$E_T = \int_1^4 \frac{1}{x} dx - T_6 =$$

Error Bounds If $|f''(x)| \leq K$ for $a \leq x \leq b$. Let E_T and E_M denote the errors for the trapezoidal approximation and midpoint approximation respectively, then

$$|E_T| \le \frac{K(b-a)^3}{12n^2}$$
 and $|E_M| \le \frac{K(b-a)^3}{24n^2}$

Example (a) Give an upper bound for the error in the trapezoidal approximation of $\int_1^4 \frac{1}{x} dx$ when n = 10.

(b) Give an upper bound for the error in the midpoint approximation of $\int_1^4 \frac{1}{x} dx$ when n = 10.

(c) Using the error bounds given above determine how large should n be to ensure that the trapezoidal approximation is accurate to within $0.000001 = 10^{-6}$?

We can also approximate a definite integral using parabolas to approximate the curve as in the picture below.

Three points determine a unique parabola. We draw a parabolic segment using the three points on the curve above x_0, x_1, x_2 . We draw a second parabolic segment using the three points on the curve above x_2, x_3, x_4 etc... We estimate the integral by summing the areas of the regions below these parabolic segments to get **Simpson's Rule** for even n:

$$\int_{a}^{b} f(x)dx \approx S_{n} = \frac{\Delta x}{3}(f(x_{0}) + 4f(x_{1}) + 2f(x_{2}) + 4f(x_{3}) + 2f(x_{4}) + \dots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_{n}))$$

where

$$\Delta x = \frac{b-a}{n}$$
 and $x_i = a + i\Delta x$ and, n even

In fact we have

$$S_{2n} = \frac{1}{3}T_n + \frac{2}{3}M_n.$$

Example Use Simpson's rule with n = 6 to approximate $\int_{1}^{4} \frac{1}{x} dx$. (= ln(4) = 1.386294361) Fill in the tables below:

 $\Delta x =$

The error in this estimate is

$$E_S = \int_1^4 \frac{1}{x} dx - S_6 =$$

Extra Example (data) The following table gives the speed of a runner during the first 5 seconds of a race, use Simpson's rule to estimate the distance covered by the runner in those 5 seconds

t(s)	v(m/s)	t(s)	v(m/s)
0	0	3.0	10.51
0.5	4.67	3.5	10.67
1.0	7.34	4.0	10.76
1.5	8.86	4.5	10.81
2.0	9.73	5.0	10.81
2.5	10.22		

Distance Travelled =
$$\int_0^5 v(t) dt \approx$$

$$\frac{\Delta x}{3}(f(0) + 4f(0.5) + 2f(1) + 4f(1.5) + 2f(2) + 4f(2.5) + 2f(3) + 4f(3.5) + 2f(4) + 4f(4.5) + f(5)) = \frac{.5}{2}[0 + 4(4.67) + 2(7.34) + 4(8.86) + 2(9.73) + 4(10.22) + 2(10.51) + 4(10.67) + 2(10.76) + 4(10.81) + 10.81] = 44.735m$$

Error Bound for Simpson's Rule Suppose that $|f^{(4)}(x)| \leq K$ for $a \leq x \leq b$. If E_S is the error involved in using Simpson's Rule, then

$$|E_S| \le \frac{K(b-a)^5}{180n^4}$$

Example How large should *n* be in order to guarantee that the Simpson rule estimate for $\int_{1}^{4} \frac{1}{x} dx$ is accurate to within $0.000001 = 10^{-6}$?