Lecture 14 : Approximating an integral

Sometimes, we need to approximate an integral of the form $\int_{a}^{b} f(x) d x$ and we cannot find an antiderivative in order to evaluate the integral. Also we may need to evaluate $\int_{a}^{b} f(x) d x$ where we do not have a formula for $f(x)$ but we have data describing a set of values of the function.

Review

We might approximate the given integral using a Riemann sum. Already we have looked at the left end-point approximation and the right end point approximation to $\int_{a}^{b} f(x) d x$ in Calculus 1 . We also looked at the midpoint approximation M:
Midpoint Rule If f is integrable on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x \approx M_{n}=\sum_{i=1}^{n} f\left(\overline{x_{i}}\right) \Delta x=\Delta x\left(f\left(\overline{x_{1}}\right)+f\left(\overline{x_{2}}\right)+\cdots+f\left(\overline{x_{n}}\right)\right)
$$

where

$$
\Delta x=\frac{b-a}{n} \quad \text { and } \quad x_{i}=a+i \Delta x \quad \text { and } \quad \bar{x}_{i}=\frac{1}{2}\left(x_{i-1}+x_{i}\right)=\text { midpoint of }\left[x_{i-1}, x_{i}\right] .
$$

Example Use the midpoint rule with $n=6$ to approximate $\int_{1}^{4} \frac{1}{x} d x .(=\ln (4)=1.386294361)$ Fill in the tables below:
$\Delta x=$

x_{i}	$x_{0}=1$	$x_{1}=3 / 2$	$x_{2}=2$	$x_{3}=5 / 2$	$x_{4}=3$	$x_{5}=7 / 2$	$x_{6}=4$

$\overline{x_{i}}=\frac{1}{2}\left(x_{i-1}+x_{i}\right)$	$\overline{x_{1}}=5 / 4$	$\overline{x_{2}}=7 / 4$	$\overline{x_{3}}=9 / 4$	$\overline{x_{4}}=11 / 4$	$\overline{x_{5}}=13 / 4$	$\overline{x_{6}}=15 / 4$
$f\left(\overline{x_{i}}\right)=\frac{1}{\overline{x_{i}}}$	$4 / 5$	$4 / 7$	$4 / 9$	$4 / 11$	$4 / 13$	$4 / 15$

$M_{6}=\sum_{1}^{6} f\left(\bar{x}_{i}\right) \Delta x=\frac{1}{2}\left[\frac{4}{5}+\frac{4}{7}+\frac{4}{9}+\frac{4}{11}+\frac{4}{13}+\frac{4}{15}\right]=1.376934177$
We can also approximate a definite integral $\int_{a}^{b} f(x) d x$ using an approximation by trapezoids as shown in the picture below for $f(x) \geq 0$

FIGURE 2
Trapezoidal approximation

Trapezoidal Rule If f is integrable on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x \approx T_{n}=\frac{\Delta x}{2}\left(f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\cdots++2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right)
$$

where

$$
\Delta x=\frac{b-a}{n} \quad \text { and } \quad x_{i}=a+i \Delta x \quad \text { and } .
$$

Example Use the trapezoidal rule with $n=6$ to approximate $\int_{1}^{4} \frac{1}{x} d x . \quad(=\ln (4)=1.386294361)$ Fill in the tables below:

x_{i}	$x_{0}=1$	$x_{1}=3 / 2$	$x_{2}=2$	$x_{3}=5 / 2$	$x_{4}=3$	$x_{5}=7 / 2$	$x_{6}=4$
$f\left(x_{i}\right)=\frac{1}{x_{i}}$							

$\Delta x=$

$$
T_{6}=\frac{\Delta x}{2}\left(f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+2 f\left(x_{3}\right)+2 f\left(x_{4}\right)++2 f\left(x_{5}\right)+f\left(x_{6}\right)\right)=
$$

The error when using an approximation is the difference between the true value of the integral and the approximation.

The error for the midpoint approximation above is

$$
E_{M}=\int_{1}^{4} \frac{1}{x} d x-M_{6}=
$$

The error for the trapezoidal approximation above is

$$
E_{T}=\int_{1}^{4} \frac{1}{x} d x-T_{6}=
$$

Error Bounds If $\left|f^{\prime \prime}(x)\right| \leq K$ for $a \leq x \leq b$. Let E_{T} and E_{M} denote the errors for the trapezoidal approximation and midpoint approximation respectively, then

$$
\left|E_{T}\right| \leq \frac{K(b-a)^{3}}{12 n^{2}} \quad \text { and } \quad\left|E_{M}\right| \leq \frac{K(b-a)^{3}}{24 n^{2}}
$$

Example (a) Give an upper bound for the error in the trapezoidal approximation of $\int_{1}^{4} \frac{1}{x} d x$ when $n=10$.
(b) Give an upper bound for the error in the midpoint approximation of $\int_{1}^{4} \frac{1}{x} d x$ when $n=10$.
(c) Using the error bounds given above determine how large should n be to ensure that the trapezoidal approximation is accurate to within $0.000001=10^{-6}$?

We can also approximate a definite integral using parabolas to approximate the curve as in the picture below.

Three points determine a unique parabola. We draw a parabolic segment using the three points on the curve above x_{0}, x_{1}, x_{2}. We draw a second parabolic segment using the three points on the curve above x_{2}, x_{3}, x_{4} etc... We estimate the integral by summing the areas of the regions below these parabolic segments to get Simpson's Rule for even n :

$$
\int_{a}^{b} f(x) d x \approx S_{n}=\frac{\Delta x}{3}\left(f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+2 f\left(x_{4}\right)+\cdots+2 f\left(x_{n-2}\right)+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right)
$$

where

$$
\Delta x=\frac{b-a}{n} \quad \text { and } \quad x_{i}=a+i \Delta x \quad \text { and, } \mathrm{n} \text { even }
$$

In fact we have

$$
S_{2 n}=\frac{1}{3} T_{n}+\frac{2}{3} M_{n}
$$

Example Use Simpson's rule with $n=6$ to approximate $\int_{1}^{4} \frac{1}{x} d x .(=\ln (4)=1.386294361)$ Fill in the tables below:
$\Delta x=$

x_{i}	$x_{0}=1$	$x_{1}=3 / 2$	$x_{2}=2$	$x_{3}=5 / 2$	$x_{4}=3$	$x_{5}=7 / 2$	$x_{6}=4$
$f\left(x_{i}\right)=\frac{1}{x_{i}}$							

$$
S_{6}=\frac{\Delta x}{3}\left(f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+2 f\left(x_{4}\right)+4 f\left(x_{5}\right)+f\left(x_{6}\right)\right)=
$$

The error in this estimate is

$$
E_{S}=\int_{1}^{4} \frac{1}{x} d x-S_{6}=
$$

Extra Example (data) The following table gives the speed of a runner during the first 5 seconds of a race, use Simpson's rule to estimate the distance covered by the runner in those 5 seconds

$t(s)$	$v(\mathrm{~m} / \mathrm{s})$	$t(s)$	$v(\mathrm{~m} / \mathrm{s})$
0	0	3.0	10.51
0.5	4.67	3.5	10.67
1.0	7.34	4.0	10.76
1.5	8.86	4.5	10.81
2.0	9.73	5.0	10.81
2.5	10.22		

Distance Travelled $=\int_{0}^{5} v(t) d t \approx$
$\frac{\Delta x}{3}(f(0)+4 f(0.5)+2 f(1)+4 f(1.5)+2 f(2)+4 f(2.5)+2 f(3)+4 f(3.5)+2 f(4)+4 f(4.5)+f(5))=$ $=\frac{.5}{2}[0+4(4.67)+2(7.34)+4(8.86)+2(9.73)+4(10.22)+2(10.51)+4(10.67)+2(10.76)+4(10.81)+10.81]$ $=44.735 \mathrm{~m}$

Error Bound for Simpson's Rule Suppose that $\left|f^{(4)}(x)\right| \leq K$ for $a \leq x \leq b$. If E_{S} is the error involved in using Simpson's Rule, then

$$
\left|E_{S}\right| \leq \frac{K(b-a)^{5}}{180 n^{4}}
$$

Example How large should n be in order to guarantee that the Simpson rule estimate for $\int_{1}^{4} \frac{1}{x} d x$ is accurate to within $0.000001=10^{-6}$?

